
ExaNIC Sockets Usage Guide

The ExaNIC Sockets acceleration library allows applications to benefit from the low latency
of direct access to the ExaNIC without requiring modifications to the application. This is
achieved by intercepting calls to the Linux socket APIs.

While ExaNIC Sockets should be compatible with most applications using Linux socket APIs,
there are some cases where programs may not work as expected. Feedback and bug
reports would be greatly appreciated (contact us at support@exablaze.com).

1. Known issues and l imitations

• Each thread that calls a blocking I/O call - e.g. select(), poll(), epoll_wait(), recv(),
read() or accept() - will spin waiting on data. This normally provides optimal latency
but can induce performance problems if there are more threads than available
CPUs. Other blocking modes will be provided in the future.

• If a socket is bound to a wildcard address (INADDR_ANY) or to a multicast address, it
will only receive packets that arrive on ExaNIC interfaces when run with the
acceleration library.

• Connecting to an accelerated socket from the same host is not supported (for
example, if a socket is bound to 192.168.1.1:80, then it is not possible to connect to
192.168.1.1:80 from the local host).

• Transmitted multicast datagrams are not looped back to local sockets.

• The MSG_WAITALL flag to recv() is not currently supported (to be resolved).

• No support for recursive addition of epoll file descriptors to epoll sets.

• No support for IP fragmentation.

• Sockets may not be correctly maintained across fork() or execve().

• Sockets cannot be transferred to other processes with sendmsg().

2. Software installation
Build the ExaNIC driver and libraries as per the ExaNIC Installation and Configuration Guide.
ExaNIC Sockets is built and installed as a standard component, and the exasock kernel
module is loaded automatically when an ExaNIC interface is brought up.

3. Usage
First ensure that the application works without ExaNIC Sockets. All IP addresses should be
configured as if you were running the application through the normal Linux network
interface corresponding to the ExaNIC.

© 2015 Exablaze Pty Ltd Version 1.6.0, July 2015 Page 1 of 2

ExaNIC Sockets Usage Guide

Then, to accelerate the application, simply prefix it with the exasock command. For
example, to run the UNIX netcat (nc) utility to listen for UDP datagrams on port 1234:

$ exasock nc -u -l 1234

Another simple example application that receives and sends UDP multicast datagrams is
located in examples/exasock/multicast-echo.c. Note that this is a normal Linux
sockets application that can be run either with or without the ExaNIC Sockets acceleration
library.

Sometimes it can be difficult to determine if the kernel bypass is functioning correctly.
Setting the EXASOCK_DEBUG environment variable prints extra debugging information that
can help. For example:

$ EXASOCK_DEBUG=1 exasock nc -u -l 1234
exasock: enabled bypass on fd 4

In this case, the message 'exasock: enabled bypass on fd 4' indicates that kernel
bypass has been enabled for the socket associated with file descriptor 4.

4. Tips for best performance

• Wherever possible, do not mix accelerated sockets with non-accelerated sockets
and other file descriptors in select() and poll() calls.

• For the best possible performance, pin threads to CPU cores in the CPU socket
directly connected to the ExaNIC.

© 2015 Exablaze Pty Ltd Version 1.6.0, July 2015 Page 2 of 2

