
l ibexanic API Guide

libexanic is a low-level access library for the ExaNIC hardware. It can be used to transmit
and receive raw Ethernet packets with minimum possible latency. Customers who require
higher level TCP/IP functionality should instead consider using ExaNIC Sockets.

It is recommended that users first consult the ExaNIC Configuration Guide and ensure that
that the ExaNIC software is installed and working.

Opening the device
The first step is to open a handle to the device:

 #include <exanic/exanic.h>

 exanic_t * exanic_acquire_handle(const char *device);

The ExaNIC cards in the system will be "exanic0", "exanic1", ... in order of PCI ID. This is
the same device name reported by the exanic-config utility.

To avoid hardcoding the ExaNIC device name in an application, the following function
can also be used to look up the device name and port number from a Linux interface
name:

 #include <exanic/config.h>

 int exanic_find_port_by_interface_name(const char *name,
 char *device, size_t device_len, int *port_number);

device_len specifies the length of the device buffer into which the device name is
returned; it should be at least 8 bytes. The return value is 0 on success and -1 if the
requested interface name was not found.

Receive
The ExaNIC delivers packets into logical receive buffers. To attach to a receive buffer, the
programmer should call:

 #include <exanic/fifo_rx.h>

 exanic_rx_t * exanic_acquire_rx_buffer(exanic_t *exanic,
 int port_number, int buffer_number);

There is no limit to the number of applications that can connect to a receive buffer. By
default, all received traffic on a given port will arrive in the buffer obtained by setting
buffer_number = 0. Frames destined for other hosts are filtered out by hardware unless

© 2014 Exablaze Pty Ltd Version 1.4.0, September 2014 Page 1 of 7

l ibexanic API Guide

promiscuous mode is enabled. When hardware flow steering is enabled, and for
buffer_number > 0, this function can be used to attach to a userspace flow steering or
flow hashing buffer. Flow steering mode configures the ExaNIC hardware to redirect
received frames from the default buffer to one of 32 userspace buffers. For details on
enabling and configuring flow steering, see the flow steering section of this document.

To receive a frame, call:

 ssize_t exanic_receive_frame(exanic_rx_t *rx,
 char *rx_buf, size_t rx_buf_size,
 uint32_t *timestamp);

The caller should poll this function in a loop, possibly interspersed with other work. (There is
currently no API that would put the current process to sleep waiting for a packet; this may
be available in the future, but would naturally involve higher latency.)

The return value will be one of:

>0 The length of the frame acquired
0 No frame currently available

-EXANIC_RX_FRAME_ABORTED Frame aborted by sender
-EXANIC_RX_FRAME_CORRUPT Frame failed hardware CRC check
-EXANIC_RX_FRAME_HWOVFL Frame lost due to hardware overflow

(e.g. insufficient PCIe/memory bandwidth)
-EXANIC_RX_FRAME_SWOVFL Frame lost due to software overflow

(e.g. scheduling issue)
-EXANIC_RX_FRAME_TRUNCATED Supplied buffer was too short

The frame delivered to rx_buf is a complete Ethernet frame including the CRC footer,
however the CRC has already been verified by the hardware.

The frame timestamp is returned via the provided timestamp pointer. timestamp can be
NULL if the timestamp is not required. To convert timestamps to real time (nanoseconds
since epoch), use:

 #include <exanic/time.h>

 uint64_t exanic_timestamp_to_counter(exanic_t *exanic,
 uint32_t timestamp);

This function must be called within a few seconds of timestamp acquisition due to the
limited precision of the uint32_t timestamp; the high order parts of the time are taken
from the system clock.

exanic_receive_frame may block for a very short period of time (<2 µs) to wait for
additional fragments of the frame to arrive via PCI Express. To avoid blocking, there is
another function for receiving partial frames:

© 2014 Exablaze Pty Ltd Version 1.4.0, September 2014 Page 2 of 7

l ibexanic API Guide

 ssize_t exanic_receive_chunk(exanic_rx_t *rx, char *rx_buf,
 int *more_chunks);

This function receives frames in chunks of at most 120 bytes.

When a new chunk is available, exanic_receive_chunk will deliver the data to rx_buf
and return the number of bytes received. *more_chunks will be set to 1 if there are more
chunks in the frame, or 0 if this is the last chunk. If there is no new data available,
exanic_receive_chunk will return 0 and *more_chunks will be left unchanged.

To receive a complete frame, the caller should poll exanic_receive_chunk in a loop until
*more_chunks is set to 0.

Transmit
The ExaNIC also contains transmit buffers from which packets are transmitted. To attach to
a transmit buffer, the programmer should call:

 exanic_tx_t * exanic_acquire_tx_buffer(exanic_t *exanic,
 int port_number, size_t requested_size);

Each application is allocated a portion of the available transmit buffer space.
requested_size should be 0 or a multiple of 4096. A value of 0 indicates to use the default
size, which is currently 4096. Larger values can increase transmit bandwidth for applications
that send many packets close together, at the expense of reducing the number of
applications that can share a port.

To transmit a packet, call:

 int exanic_transmit_frame(exanic_tx_t *tx, const char *frame,
 size_t frame_size);

The frame to be sent should include the Ethernet header but not include the CRC footer
which is added by the hardware.

It is also possible to obtain a pointer directly into the NIC frame buffer with:

 int exanic_begin_transmit_frame(exanic_tx_t *tx, size_t frame_size);

Packet transmission is then triggered with:

 int exanic_end_transmit_frame(exanic_tx_t *tx, size_t frame_size);

frame_size should be less than or equal to the size allocated in
exanic_begin_transmit_frame. Care should be taken when using this direct write
interface because the returned pointer is in PCI Express memory space; to ensure processor
write coalescing it should be written in an approximately sequential fashion and it should
not be read from. If in doubt, use the simpler exanic_transmit_frame API (published

© 2014 Exablaze Pty Ltd Version 1.4.0, September 2014 Page 3 of 7

l ibexanic API Guide

performance numbers for the ExaNIC use that function, the performance difference is
mimimal).

Note: both exanic_transmit_frame and exanic_begin_transmit_frame may block for
a very short period of time (<2 µs) if the transmit buffer is full. Please provide feedback to
Exablaze if you require a non-blocking version for your application.

Releasing resources
The API handles should be freed with the following functions:

void exanic_release_handle(exanic_t *exanic);
void exanic_release_rx_buffer(exanic_rx_t *rx);
void exanic_release_tx_buffer(exanic_rx_t *rx);

Flow steering
Flow steering is available in newer releases of the ExaNIC firmware, which can be obtained
from the Exablaze support website. It is supported in firmware versions 2014-05-28 and later.
All flow steering is performed in hardware on the ExaNIC, freeing the host CPU to perform
other work. Use of ExaNIC flow steering does not incur any additional latency penalty on
received frames.

Flow steering makes use of the concepts of filters and buffers. Each physical port on the
card has a default receive buffer (buffer 0) in host memory to which all traffic is normally
delivered and which is shared between the kernel and userspace applications. All ports
have an additional 32 userspace buffers, numbered 1 to 32, that can be obtained by a
user's application as follows.

First, to attach to an unused receive filter buffer for a given card port, use the function:

 #include <exanic/fifo_rx.h>

 exanic_rx_t * exanic_acquire_unused_filter_buffer(exanic_t *exanic,
 int port_number);

This returns an exanic_rx_t instance with an unused receive buffer. The buffer_number
field of this instance indicates which of the 32 userspace buffers was allocated. To obtain a
reference to a specific buffer at a later time, use:

 exanic_rx_t * exanic_acquire_rx_buffer(exanic_t *exanic,
 int port_number, int buffer_number);

The buffer_number argument should be set to the number of the desired buffer. If this
buffer has not yet been allocated it will be allocated by this function. There is no limit to the
number of applications that can connect to a given buffer.

Once the application has acquired userspace buffers, it can begin to define rules that
direct traffic towards them. Rules exist in two sets, MAC address rules and IP address rules.

© 2014 Exablaze Pty Ltd Version 1.4.0, September 2014 Page 4 of 7

l ibexanic API Guide

Current versions of the firmware supports 128 IP address rules and 64 MAC address rules per
physical port, but this may be increased in future firmware revisions.

To define an IP address rule, use the exanic_ip_filter_t struct, shown below, setting any
fields that you wish to perform a wildcard match on to zero. All fields are stored in network
byte order – so you must use appropriate calls to htons and htonl prior to assignment.

 #include <exanic/filter.h>

 typedef struct exanic_ip_filter
 {
 uint32_t src_addr; /**< Source IP address of packet */
 uint32_t dst_addr; /**< Destination IP address of packet */
 uint16_t src_port; /**< Source port of packet */
 uint16_t dst_port; /**< Destination port of packet */
 uint8_t protocol; /**< IPPROTO_UDP or IPPROTO_TCP */
 } exanic_ip_filter_t;

To bind the rule to the previously obtained buffer use the function exanic_filter_add_ip,
passing in the previously obtained buffer and the filter rule you have defined:

 int exanic_filter_add_ip(exanic_t *exanic,
 const exanic_rx_t *buffer,
 const exanic_ip_filter_t *filter);

This function will return a unique positive integer ID for each rule created on a given port, or
-1 if no further rules can be allocated. From this point on, frames matching the given rule
will be steered by the hardware to the defined userspace buffer, and will not reach the
Linux network stack or the default userspace buffer. Calls to exanic_receive_frame,
using the acquired buffer as the first argument, will only return frames matching the rules
associated with the buffer. Frames not matching any rules will still be delivered to buffer 0.

To add a MAC address rule, first define the rule using the exanic_mac_filter_t struct,
where all fields are in network byte order. This means that dst_mac[0] is the most
significant byte of the destination MAC address. Set to zero any field to perform a wildcard
match.

 typedef struct exanic_mac_filter
 {
 uint8_t dst_mac[6];
 uint16_t ethertype;
 uint16_t vlan;
 int vlan_match_method;
 } exanic_mac_filter_t;

In the case of VLAN tagged frames, a number of match modes can be used. These are
defined in the enumeration vlan_match_method:

© 2014 Exablaze Pty Ltd Version 1.4.0, September 2014 Page 5 of 7

l ibexanic API Guide

 #include <exanic/pcie_if.h>

 enum vlan_match_method
 {
 /** Match on all frames, whether VLAN or not. */
 EXANIC_VLAN_MATCH_METHOD_ALL = 0,

 /** Only match on the VLAN given. */
 EXANIC_VLAN_MATCH_METHOD_SPECIFIC = 1,

 /** Only match if frame does not have a vlan tag. */
 EXANIC_VLAN_MATCH_METHOD_NOT_VLAN = 2,

 /** Match frames that have a VLAN tag, but not those that don't. */
 EXANIC_VLAN_MATCH_METHOD_ALL_VLAN = 3,
 };

Then, bind the filter to a previously acquired buffer using:

 int exanic_filter_add_mac(exanic_t *exanic,
 const exanic_rx_t *buffer,
 const exanic_mac_filter_t *filter);

This function will return a unique positive integer ID for each MAC address rule on a given
port, or -1 if no hardware rules remain. As in the case of IP rules, once a rule is bound to a
buffer, calls to exanic_receive_framefor that buffer will only return frames matching rules
associated with that buffer.

It should be mentioned that it is possible to create rules such that more than one rule
matches an incoming ethernet frame. When this is the case, priority is resolved as follows:

• MAC address rules have higher priority than IP address rules,
• Within a given set of MAC or IP address rules, the lower the rule ID, the higher the rule

priority.

Rules can be released using:

 int exanic_filter_remove_ip(exanic_t *exanic,
 int port_number,
 int filter_id);

 int exanic_filter_remove_mac(exanic_t *exanic,
 int port_number,
 int filter_id);

© 2014 Exablaze Pty Ltd Version 1.4.0, September 2014 Page 6 of 7

l ibexanic API Guide

Flow hashing
The ExaNIC also supports hardware flow hashing which can be used to distribute
load evenly amongst a number of host processors. When enabled, the ExaNIC
hardware will deliver received frames to one of a number of userspace receive
buffers based on a hash computed over IP headers. The hash function guarantees
that all frames belonging to a given flow will always arrive in the same buffer. For a
given ExaNIC port, flow steering and flow hashing cannot be used at the same
time.

To enable flow hashing on a specific port, use the function:

 #include <exanic/fifo_rx.h>
 int exanic_enable_flow_hashing(exanic_t *exanic, int port_number,
 int max_buffers, int hash_function);

This function will allocate up to max_buffers userspace receive buffers and
distribute IP traffic evenly among them using the hash_function. The number of
buffers must be a power of 2, and currently a maximum of 32 buffers are available.
The number of actual receive buffers allocated is returned by this function. The
available hash functions are defined in rx_hash_function.

 enum rx_hash_function
 {
 /* Symmetric hash over source port, destination port */
 EXANIC_RX_HASH_FUNCTION_PORT = 0,

 /* Symmetric hash over source ip, destination ip */
 EXANIC_RX_HASH_FUNCTION_IP = 1,

 /* Symmetric hash over source ip & port, destination ip & port */
 EXANIC_RX_HASH_FUNCTION_PORT_IP = 2,
 };

The application can then attach to the userspace flow hashing buffers by calling
exanic_acquire_rx_buffer, passing in buffer numbers from 1 to the number of allocated
userspace receive buffers. IP traffic will be balanced across each of these buffers, and
exanic_receive_frame can be used to obtain the traffic in each buffer.

To disable flow hashing and free all allocated buffers, use:

 void exanic_disable_flow_hashing(exanic_t *exanic,
 int port_number);

© 2014 Exablaze Pty Ltd Version 1.4.0, September 2014 Page 7 of 7

